

Geotechnical

Building Sciences

Construction Monitoring

Telephone (866) 217.7900 (705) 742.7900

Facsimile (705) 742.7907

Website cambium-inc.com

Mailing Address P.O. Box 325 52 Hunter Street East Peterborough, ON K9H 1G5

Locations
Peterborough
Kingston
Barrie
Oshawa

Laboratory Peterborough

June 27, 2019

City of Kawartha Lakes 26 Francis Street, Lindsay, ON K9V 5R8

Via email: rmonaghan@kawarthalakes.ca

Attn: Richard Monaghan, C.E.T.
Senior Engineering Technician

Re: Characterization of Street Sweepings
City of Kawartha Lakes, Ontario
Cambium Reference: 7817-002

Dear Mr. Monaghan,

The City of Kawartha Lakes is seeking reuse possibilities for the road sweepings that are collected at the end of the winter from the City roads. Rather than disposing the sweepings as waste, the winter sand sweepings are stockpiled at the Emily, Fenelon, and Oakwood facilities. Cambium Inc. (Cambium) was retained by the City of Kawartha Lakes (Client) to complete physical and chemical characterization of the sweepings in order to identify potential reuse options for this material.

Samples of the sweepings were provided by the City. The chemical testing was completed by SGS Environmental Laboratories in Lakefield, Ontario. The physical testing was completed at Cambium's CCIL-certified materials testing laboratory in Peterborough, Ontario.

CHEMICAL TESTING RESULTS

Each sample was tested for the following parameters: petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene, and xylenes (BTEX) and metals and inorganics. Analytical results were compared to the Table 1 and Table 2 Site Condition Standards (SCS) of the *Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act* (MOE, 2011). Table 1 applies to the *Full Depth Background Site Condition Standards* and Table 2 applies to *Full Depth Generic Site Condition Standards in a Potable Ground Water Condition*. Industrial / Commercial / Community (ICC) Property Use and

Geotechnical

Building Sciences

Construction Monitoring

Telephone (866) 217.7900 (705) 742.7900

Facsimile (705) 742.7907

Website cambium-inc.com

Mailing Address
P.O. Box 325
52 Hunter Street East
Peterborough, ON
K9H 1G5

Locations
Peterborough
Kingston
Barrie
Oshawa

Laboratory Peterborough

June 27, 2019

coarse-grained soils were selected to determine concentration exceedances for the analyzed parameters. It is noted that Community Property Use includes municipal road right-of-ways.

Table 1 SCS represent typical background concentrations encountered in Ontario, and are the most stringent criteria available for comparison. Soil that meets the Table 1 SCS is generally considered clean fill and can be handled as such. Table 2 SCS are less stringent, such that soil that exceeds the Table 2 SCS is generally considered contaminated and has to be disposed at a facility (e.g., landfill) that accepts such waste. Analytical results were compared to both the Table 1 and Table 2 SCS to determine appropriate reuse of the soil.

Laboratory analytical results reported electrical conductivity (EC) and/or sodium adsorption ratio (SAR) in the samples collected from the Emily and Oakwood depots at concentrations exceeding the Table 1 standards, but less than the Table 2 standards. It is likely that the observed EC and SAR exceedances are due to the use of de-icing salt. The results also reported PHC F3 and/or F4 in the samples collected from the Emily and Fenelon depots at concentrations exceeding the Table 1 standards, but less than the Table 2 standards. It is likely that the observed PHC F3 and F4 concentrations are due to asphalt inclusions in the samples. All other tested parameters were reported at concentrations less than the Table 1 and Table 2 standards, as shown in the attached analytical summary table and the Laboratory Certificates of Analysis.

Based on the laboratory results, the sampled material is suitable for reuse at sites for which the Table 2 SCS for ICC Property Use and coarse-grained soils apply. Accordingly, the soil should not be placed on agricultural or residential land, nor within 30 m of a water body, but is generally suitable for the reuse options provided below.

GRADATION AND PHYSICAL TESTING RESULTS

The gradation test results and micro-deval fine aggregate loss results are attached to this letter and summarized in Table 1.

Geotechnical

Building Sciences

Construction Monitoring

Telephone

(866) 217.7900 (705) 742.7900

Facsimile

(705) 742.7907

Website

cambium-inc.com

Mailing Address

P.O. Box 325 52 Hunter Street East Peterborough, ON K9H 1G5

Locations

Peterborough Kingston Barrie Oshawa

Laboratory Peterborough

June 27, 2019

Table 1 Gradation and Physical Testing Results

Sieve (mm)	Emily Depot (% passing)	Fenelon Depot (% passing)	Oakwood Depot (% passing)
26.5	100	100	100
13.2	99.6	99.9	99.9
9.5	98.6	99.4	99.6
4.75	93.1	93.2	94.9
1.18	66.9	67.1	67.6
0.300	31.6	25.4	25.2
0.150	17.7	11.1	11.2
0.075	10.3	4.7	5.7
Fine Aggregate % loss	11.2%	8.6%	14.1%

The material from the Oakwood and Fenelon Depots meet the gradation requirements for Granular B Type 1 and SSM material. The material from the Emily Depot meets the SSM gradation requirements but does not meet the Granular B Type 1 gradation requirements due to the fines percentage of 10.3%, which is more than the maximum of 8% in the specification.

REUSE OPTIONS

Based on the results of the gradation and physical testing, the stockpiled street sweepings would be suitable for reuse as a Granular B Type 1 material (except for the Emily Depot) or a Select Subgrade Material in the following situations:

- As backfill material against exterior building foundations or culverts.
- As upfill material to obtain a higher subgrade on road widenings or grade raises, prior to being covered with Granular B and Granular A. Due to the lack of stone sized particles, the reused screenings should be kept out of high traffic road subbase.

Geotechnical

Building Sciences

Construction Monitoring

Telephone

(866) 217.7900 (705) 742.7900

Facsimile

(705) 742.7907

Website

cambium-inc.com

Mailing Address
P.O. Box 325
52 Hunter Street East
Peterborough, ON
K9H 1G5

Locations

Peterborough Kingston Barrie Oshawa

Laboratory Peterborough

June 27, 2019

 As sand backfill around catchbasins and manholes to prevent frost jacking and differential settlement due to it's low frost susceptibility and micro deval loss.

The stockpiled street sweepings from the Emily Depot did not meet the gradation requirements for reuse as winter sand, which requires 100% passing the 9.5 mm sieve and <5% passing the 75 μ m sieve. The stockpiled street sweepings from the Fenelon and Oakwood depots do not meet the winter sand requirements, although the testing results show that they are within <1% of the requirements noted above.

We trust that this letter report meets with your immediate requirements. If you have further questions or comments, please contact the undersigned at 705-742-7900 ext. 220 or 336.

Best regards,

Cambium Inc.

Bernie Taylor, P.Eng.

Project Manager - Environmental

Jennifer Wales, P.Eng.

Project Manager - Geotechnical

BT/JW

Encl.

Table 2 – Summary of Soil Quality – Metals, Inorganics, BTEX and PHCs Laboratory Certificates of Analysis

Gradation and Physical Testing Results

\\camfile\Projects\7800 to 7899\7817-002 City of Kawartha Lakes - Soil Testing - Various Works Yards 2019\Deliverables\2019-06-27 LTR Soil Characterization for CKL.docx

Geotechnical

Building Sciences

Construction Monitoring

Telephone

(866) 217.7900 (705) 742.7900

Facsimile

(705) 742.7907

Website

cambium-inc.com

Mailing Address

P.O. Box 325 52 Hunter Street East Peterborough, ON K9H 1G5

Locations

Peterborough Kingston Barrie Oshawa

Laboratory Peterborough

June 27, 2019

QUALIFICATIONS AND LIMITATIONS

Limited Warranty

In performing work on behalf of a client, Cambium relies on its client to provide instructions on the scope of its retainer and, on that basis, Cambium determines the precise nature of the work to be performed. Cambium undertakes all work in accordance with applicable accepted industry practices and standards. Unless required under local laws, other than as expressly stated herein, no other warranties or conditions, either expressed or implied, are made regarding the services, work or reports provided.

Reliance on Materials and Information

The findings and results presented in reports prepared by Cambium are based on the materials and information provided by the client to Cambium and on the facts, conditions and circumstances encountered by Cambium during the performance of the work requested by the client. In formulating its findings and results into a report, Cambium assumes that the information and materials provided by the client or obtained by Cambium from the client or otherwise are factual, accurate and represent a true depiction of the circumstances that exist. Cambium relies on its client to inform Cambium if there are changes to any such information and materials. Cambium does not review, analyze or attempt to verify the accuracy or completeness of the information or materials provided, or circumstances encountered, other than in accordance with applicable accepted industry practice. Cambium will not be responsible for matters arising from incomplete, incorrect or misleading information or from facts or circumstances that are not fully disclosed to or that are concealed from Cambium during the provision of services, work or reports.

Facts, conditions, information and circumstances may vary with time and locations and Cambium's work is based on a review of such matters as they existed at the particular time and location indicated in its reports. No assurance is made by Cambium that the facts, conditions, information, circumstances or any underlying assumptions made by Cambium in connection with the work performed will not change after the work is completed and a report is submitted. If any such changes occur or additional information is obtained, Cambium should be advised and requested to consider if the changes or additional information affect its findings or results.

When preparing reports, Cambium considers applicable legislation, regulations, governmental guidelines and policies to the extent they are within its knowledge, but Cambium is not qualified to advise with respect to legal matters. The presentation of information regarding applicable legislation, regulations, governmental guidelines and policies is for information only and is not intended to and should not be interpreted as constituting a legal opinion concerning the work completed or conditions outlined in a report. All legal matters should be reviewed and considered by an appropriately qualified legal practitioner.

Site Assessments

A Site assessment is created using data and information collected during the investigation of a Site and based on conditions encountered at the time and particular locations at which fieldwork is conducted. The information, sample results and data collected represent the conditions only at the specific times at which and at those specific locations from which the information, samples and data were obtained and the information, sample results and data may vary at other locations and times. To the extent that Cambium's work or report considers any locations or times other than those from which information, sample results and data was specifically received, the work or report is based on a reasonable extrapolation from such information, sample results and data but the actual conditions encountered may vary from those extrapolations.

Only conditions at the Site and locations chosen for study by the client are evaluated; no adjacent or other properties are evaluated unless specifically requested by the client. Any physical or other aspects of the Site chosen for study by the client, or any other matter not specifically addressed in a report prepared by Cambium, are beyond the scope of the work performed by Cambium and such matters have not been investigated or addressed.

No Reliance

Cambium and to which its reports are addressed. Cambium is not responsible for the use of its work or reports by any other party, or for the reliance on, or for any decision which is made by any party using the services or work performed by or a report prepared by Cambium without Cambium's express written consent. Any party that relies on services or work performed by Cambium or a report prepared by Cambium without Cambium's express written consent, does so at its own risk. No report of Cambium may be disclosed or referred to in any public document without Cambium's express prior written consent. Cambium specifically disclaims any liability or responsibility to any such party for any loss, damage, expense, fine, penalty or other such thing which may arise or result from the use of any information, recommendation or other matter arising from the services, work or reports provided by Cambium.

Limitation of Liability

Cambium is not responsible for any lost revenues, lost profits, cost of capital, or any special, indirect, consequential or punitive damages suffered by the client or any other party in reliance on any Cambium work or report. Cambium's total liability and responsibility to the client or any other person for any and all losses, costs, expenses, damages, claims, causes of action or other liability whatsoever which do or may result or arise from or be in relation to Cambium's services, work (or failure to perform services or work) or reports shall be limited to the invoiced charges for the work performed by Cambium.

Personal Liability

The client expressly agrees that Cambium employees shall have no personal liability to the client with respect to a claim, whether in contract, tort and/or other cause of action in law. Furthermore, the client agrees that it will bring no proceedings nor take any action in any court of law against Cambium employees in their personal capacity.

Table 2 - Summary of Soil Quality (Metals, Inorganics, BTEX and PHCs)

Sample Identification		Laboratory Reportable	Table 1	Table 2	Emily Depot	Fenelon Depot	Oakwood Depot
Sample Date	Units	Detection Limit (RDL)	Standards 1	Standards ²	4-Jun-19	4-Jun-19	4-Jun-19
Barium	µg/g	0.1	220	670	17	15	20
Beryllium	µg/g	0.02	2.5	8	0.09	0.08	0.12
Boron	ha/a	0.02	36	120	0.09	0.08	3
Cadmium	µg/g	0.02	1.2	1.9	0.03	0.09	< 0.02
Chromium	µg/g	0.5	70	160	3.7	4.2	3.6
Cobalt	µg/g	0.01	21	80	1.5	2.1	2
Copper	µg/g	0.01	92	230	4	5.4	4.8
Lead	µg/g	0.1	120	120	2.6	1.5	2.2
Molybdenum	µg/g	0.1	2	40	0.3	0.2	0.1
Nickel	µg/g	0.1	82	270	3	3.2	3.5
Silver	ha/a	0.05	0.5	40		< 0.05	< 0.05
Thallium		0.03	1	3.3	< 0.05	0.02	
Uranium	ha/a	0.02	2.5	3.3			0.05
Vanadium		3	86	86	0.24	0.21	0.28
Zinc	µg/g	0.7	290	340	15	12 57	9.9
	µg/g	0.7	1.3	40			
Antimony	ha/a				< 0.8	< 0.8	< 0.8
Arsenic	µg/g	0.5	18 1.5	18	1.4	0.8	1.4
Selenium	µg/g	0.7		5.5	< 0.7	< 0.7	< 0.7
Mercury	ha/a	0.05	0.27	3.9	< 0.05	< 0.05	< 0.05
Boron (Hot Water Soluble)	µg/g N/A	0.5	NV 2.4	12	< 0.5	< 0.5	< 0.5
Sodium Adsorption Ratio	mS/cm		10000000	27	6.2	0.8	2.8
Conductivity		0.002	0.57	1.4	0.97	0.11	0.29
pH Chromium VI	N/A	0.05	NV	NV	8.15	8.17	8.21
	ha/a	0.2	0.66	8	< 0.2	< 0.2	< 0.2
Cyanide	на/а	0.05	0.051	0.051	< 0.05	< 0.05	< 0.05
Benzene	µg/g	0.02	0.02	0.32	< 0.02	< 0.02	< 0.02
Ethylbenzene	ha/a	0.05	0.05	1.1	< 0.05	< 0.05	< 0.05
Toluene	µg/g	0.05	0.2	6.4	< 0.05	< 0.05	< 0.05
Xylene Mixture	µg/g	0.05	0.05	26	< 0.05	< 0.05	< 0.05
F1 (C6 to C10)	µ9/9	10	25	55	< 10	< 10	< 10
F2 (C10 to C16)	µg/g	10	10	230	< 10	< 10	< 10
F3 (C16 to C34)	µ9/9	50	240	1700	189	264	57
F4 (C34 to C50)	µg/g	50	120	3300	366	493	108
PHC F4 (Gravimetric)	µg/g	200	120	3300	1030	1090	

Notes:

Bold - value exceeds Table 1 standard.

Bold and Shaded - value exceeds Table 2 standard.

Bold and underline - Laboratory RDL exceeds standard.

"NV" indicates no value.

^{1.} Table 1 (Soil Other Than Sediment, Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use) of the Soil Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act.

^{2.} Table 2 (Soil Other Than Sediment, Industrial/Commercial/Community Property Uses, Coarse) of the Soil Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act.

[&]quot;-" indicates value not analyzed.

SGS

FINAL REPORT

CA14211-JUN19 R

7812-002, Street Sweeping Characterization

Prepared for

Cambium Inc.

First Page

CLIENT DETAIL	S	LABORATORY DETAI	LS	
Client	Cambium Inc.	Project Specialist	Brad Moore Hon. B.Sc	
		Laboratory	SGS Canada Inc.	
Address	52 Hunter Street East	Address	185 Concession St., Lakefield ON, K0L 2H0	
	Peterborough, ON			
	K9H 1G5. Canada			
Contact	Bernie Taylor	Telephone	705-652-2143	
Telephone	705-742-7900 ext 200	Facsimile	705-652-6365	
Facsimile	705-742-7907	Email	brad.moore@sgs.com	
Email	bernie.taylor@cambium-inc.com; file@cambium-inc.com	SGS Reference	CA14211-JUN19	
Project	7812-002, Street Sweeping Characterization	Received	06/05/2019	
Order Number		Approved	06/12/2019	
Samples	Soil (3)	Report Number	CA14211-JUN19 R	
		Date Reported	06/12/2019	,

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Temperature of Sample upon Receipt: 12 degrees C

Cooling Agent Present:No

Custody Seal Present:No

Chain of Custody Number:006861

SIGNATORIES

Brad Moore Hon. B.Sc

TABLE OF CONTENTS

First Page	1
Index	
Results	
Exceedance Summary	
QC Summary	
Legend	
Annexes	16

CA14211-JUN19 R

Client: Cambium Inc.

Project: 7812-002, Street Sweeping Characteri

Project Manager: Bernie Taylor

Samplers: Dave Flemming

PACKAGE: REG153 - BTEX (SOIL)			Sai	mple Number	11	12	13			
			S	Sample Name	Emily Depot	Oakwood Depot	Fenelon Depot			
.1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/P	arkland/Industrial - UNDEFII	NED	S	Sample Matrix	Soil	Soil	Soil			
.2 = REG153 / SOIL / COARSE - TABLE 2 - Industrial/Cor	nmercial - UNDEFINED			Sample Date	04/06/2019	04/06/2019	04/06/2019			
Parameter	Units	RL	L1	L2	Result	Result	Result			
BTEX										
Benzene	µg/g	0.02	0.02	0.32	< 0.02	< 0.02	< 0.02			
Ethylbenzene	µg/g	0.05	0.05	1.1	< 0.05	< 0.05	< 0.05			
Toluene	µg/g	0.05	0.2	6.4	< 0.05	< 0.05	< 0.05			(ZEA)
Xylene (total)	µg/g	0.05	0.05	26	< 0.05	< 0.05	< 0.05			
m/p-xylene	µg/g	0.05			< 0.05	< 0.05	< 0.05			
o-xylene	µg/g	0.05			< 0.05	< 0.05	< 0.05			
PACKAGE: REG153 - Hydrides (SOIL	_)		Sar	mple Number	11	12	13			
			s	ample Name	Emily Depot	Oakwood Depot	Fenelon Depot			
1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Pa	arkland/Industrial - UNDEFIN	NED	s	ample Matrix	Soil	Soil	Soil			
2 = REG153 / SOIL / COARSE - TABLE 2 - Industrial/Con	nmercial - UNDEFINED			Sample Date	04/06/2019	04/06/2019	04/06/2019			
Parameter	Units	RL	L1	L2	Result	Result	Result			
Hydrides										
Antimony	µg/g	0.8	1.3	40	< 0.8	< 0.8	< 0.8			
Arsenic	µg/g	0.5	18	18	1.4	1.4	0.8			
Selenium	µg/g	0.7	1.5	5.5	< 0.7	< 0.7	< 0.7			

CA14211-JUN19 R

Client: Cambium Inc.

Project: 7812-002, Street Sweeping Characteri:

Project Manager: Bernie Taylor

Samplers: Dave Flemming

ACKAGE: REG153 - Metals ar	id Inorganics (SOIL)			mple Number	11 	12	13	
				ample Name	Emily Depot	Oakwood Depot	Fenelon Depot	
= REG153 / SOIL / COARSE - TABLE 1 - Resid	dential/Parkland/Industrial - UNDEFI	INED		ample Matrix	Soil	Soil	Soil	
= REG153 / SOIL / COARSE - TABLE 2 - Indus	strial/Commercial - UNDEFINED			Sample Date	04/06/2019	04/06/2019	04/06/2019	
Parameter	Units	RL	L1	L2	Result	Result	Result	
etals and Inorganics								
Moisture Content	%	-			4.6	4.4	3.2	
Barium	μg/g	0.1	220	670	17	20	15	
Beryllium	µg/g	0.02	2.5	8	0.09	0.12	0.08	
Boron	µg/g	1	36	120	3	3	2	
Cadmium	μg/g	0.02	1.2	1.9	0.03	< 0.02	0.09	
Chromium	μg/g	0.5	70	160	3.7	3.6	4.2	
Cobalt	μg/g	0.01	21	80	1.5	2.0	2.1	
Copper	µg/g	0.1	92	230	4.0	4.8	5.4	
Lead	µg/g	0.1	120	120	2.6	2.2	1.5	
Molybdenum	μg/g	0.1	2	40	0.3	0.1	0.2	
Nickel	μg/g	0.5	82	270	3.0	3.5	3.2	
Silver	μg/g	0.05	0.5	40	< 0.05	< 0.05	< 0.05	
Thallium	µg/g	0.02	1	3.3	0.03	0.05	0.02	
Uranium	μg/g	0.002	2.5	33	0.24	0.28	0.21	
Vanadium	µg/g	3	86	86	7	7	12	
Zinc	μg/g	0.7	290	340	15	9.9	57	
Water Soluble Boron	μg/g	0.5		2	< 0.5	< 0.5	< 0.5	

CA14211-JUN19 R

Client: Cambium Inc.

Project: 7812-002, Street Sweeping Characteri

Project Manager: Bernie Taylor

Samplers: Dave Flemming

ACKAGE: REG153 - Other (ORP)	(SOIL)			mple Number Sample Name	11 Emily Depot	12 Oakwood Depot	13 Fenelon Depot	
= REG153 / SOIL / COARSE - TABLE 1 - Residentia	l/Parkland/Industrial - UNDEFIN	NED	S	Sample Matrix	Soil	Soil	Soil	
2 = REG153 / SOIL / COARSE - TABLE 2 - Industrial/0	Commercial - UNDEFINED			Sample Date	04/06/2019	04/06/2019	04/06/2019	
Parameter	Units	RL	L1	L2	Result	Result	Result	
Other (ORP)								
Mercury	µg/g	0.05	0.27	3.9	< 0.05	< 0.05	< 0.05	
Sodium Adsorption Ratio	27.0	0.2	2.4	12	6.2	2.8	0.8	
SAR Calcium	mg/L	0.09			27.5	22.6	11.0	
SAR Magnesium	mg/L	0.02			21.9	1.6	0.80	
SAR Sodium	mg/L	0.15			178	52.0	10.4	
Conductivity	mS/cm	0.002	0.57	1.4	0.97	0.29	0.11	
pH	pH Units	0.05			8.15	8.21	8.17	
Chromium VI	µg/g	0.2	0.66	8	< 0.2	< 0.2	< 0.2	
Free Cyanide	μg/g	0.05			< 0.05	< 0.05	< 0.05	

CA14211-JUN19 R

Client: Cambium Inc.

Project: 7812-002, Street Sweeping Characteri:

Project Manager: Bernie Taylor

Samplers: Dave Flemming

CKAGE: REG153 - PHCs (SOIL) REG153 / SOIL / COARSE - TABLE 1 - Residential/Parklandi REG153 / SOIL / COARSE - TABLE 2 - Industrial/Commercia		ED	s	mple Number ample Name ample Matrix Sample Date	Emily Depot Soil 04/06/2019	12 Oakwood Depot Soil 04/06/2019	13 Fenelon Depot Soil 04/06/2019		
Parameter	Units	RL	L1	L2	Result	Result	Result		
lCs									
F1 (C6-C10)	μg/g	10	25	55	< 10	< 10	< 10		
F1-BTEX (C6-C10)	μg/g	10			< 10	< 10	< 10		
F2 (C10-C16)	μg/g	10	10	230	< 10	< 10	< 10		
F3 (C16-C34)	μg/g	50	240	1700	189	57	264		
F4 (C34-C50)	µg/g	50	120	3300	366	108	493		
F4G-sg (GHH)	µg/g	200	120	3300	1030		1090		
Chromatogram returned to baseline at nC50	Yes / No	46			NO	YES	NO		

EXCEEDANCE SUMMARY

		and the second s	WALE TO SELECT THE SEL		
Parameter	Method	Units	Result	REG153 / SOIL / COARSE - TABLE 1 - Residential/Parklan d/Industrial - UNDEFINED L1	REG153 / SOIL / COARSE - TABLE 2 - Industrial/Commer cial - UNDEFINED
Emily Depot					
F4 (C34 to C50)	CCME Tier 1	μg/g	366	120	
Gravimetric Heavy Hydrocarbons	CCME Tier 1	μg/g	1030	120	
Conductivity	EPA 6010/SM 2510	μg/g	0.97	0.57	
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	µg/g	6.2	2.4	
Dakwood Depot					
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	µg/g	2.8	2.4	
enelon Depot					
F3 (C16 to C34)	CCME Tier 1	µg/g	264	240	
F4 (C34 to C50)	CCME Tier 1	µg/g	493	120	
Gravimetric Heavy Hydrocarbons	CCME Tier 1	μg/g	1090	120	

QC SUMMARY

Conductivity												
Method: EPA 6010/SM 2510 Inter	nal ref.: ME-CA-ſENVIEWL-LA	K-AN-006										
Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recovery L	
						(%)	Recovery (%)	Low	High	(%)	Low	
Conductivity	EWL0123-JUN19	mS/cm	0.002	<0.002	0	10	99	90	110	NA		
Cyanide by SFA												
	CA ITABARTA LAK AN OOF											
Method: SM 4500 Internal ref.: ME Parameter	QC batch											
- વાચામભાગ		Units	RL	Method Blank	Dup	olicate	LC	LCS/Spike Blank		M	atrix Spike / Ref.	
	Reference		DIATIK	RPD	AC (%)	Spike Recovery	Recovery Limits (%)		Spike Recovery	Recovery L		
						(%)	(%)	Low	High	(%)	Low	
Free Cyanide	SKA5021-JUN19	hã/ã	0.05	<0.05	ND	20	97	80	120	101	75	
Hexavalent Chromium by IC												
Method: EPA218.6/EPA3060A Int	emal ref.: ME-CA-IENVIIC-LA	K-AN-008										
Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		М	atrix Spike / Ref.	
	Reference		Blank	RPD	AC (%)	Spike Recovery		ery Limits %)	Spike Recovery	Recovery L		
						(70)	(%)	Low	High	(%)	Low	
Chromium VI	DIO0119-JUN19	µg/g	0.2	<0.2	ND	20	98	80	120	94	75	

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method Blank	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference				k RPD	RPD AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recovery Lii	
							Recovery (%)	Low	High	(%)	Low	
Mercury	EMS0032-JUN19	µg/g	0.05	<0.05	ND	20	101	80	120	93	70	

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dupl	icate	L	.CS/Spike Blank		М	atrix Spike / Ref.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Lii
						(%)	Recovery (%)	Low	High	(%)	Low
SAR Calcium	ESG0021-JUN19	mg/L	0.09	<0.09	4	20	99	80	120	100	70
SAR Magnesium	ESG0021-JUN19	mg/L	0.02	<0.02	ND	20	96	80	120	101	70
SAR Sodium	ESG0021-JUN19	mg/L	0.15	<0.15	4	20	91	80	120	93	70

QC SUMMARY

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-005]

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover		Spike Recovery	Recovery L
						(70)	(%)	Low	High	(%)	Low
Silver	EMS0032-JUN19	ug/g	0.05	<0.05	ND	20	102	70	130	101	70
Arsenic	EMS0032-JUN19	µg/g	0.5	<0.5	7	20	92	70	130	92	70
Barium	EMS0032-JUN19	ug/g	0.1	<0.1	10	20	107	70	130	94	70
Beryllium	EMS0032-JUN19	µg/g	0.02	<0.02	1	20	100	70	130	95	70
Boron	EMS0032-JUN19	μg/g	1	<1	6	20	108	70	130	96	70
Cadmium	EMS0032-JUN19	µg/g	0.02	<0.02	4	20	100	70	130	104	70
Cobalt	EMS0032-JUN19	µg/g	0.01	<0.01	0	20	102	70	130	109	70
Chromium	EMS0032-JUN19	µg/g	0.5	<0.5	1	20	101	70	130	108	70
Copper	EMS0032-JUN19	µg/g	0.1	<0.1	1	20	104	70	130	104	70
Molybdenum	EMS0032-JUN19	µg/g	0.1	<0.1	12	20	95	70	130	106	70
Nickel	EMS0032-JUN19	ug/g	0.5	<0.5	7	20	105	70	130	109	70
ead	EMS0032-JUN19	ug/g	0.1	<0.1	2	20	103	70	130	95	70
Antimony	EMS0032-JUN19	µg/g	0.8	<0.8	ND	20	108	70	130	97	70
Selenium	EMS0032-JUN19	µg/g	0.7	<0.7	ND	20	103	70	130	102	70
Thallium	EMS0032-JUN19	μg/g	0.02	<0.02	ND	20	101	70	130	96	70
Jranium	EMS0032-JUN19	μg/g	0.002	<0.002	1	20	101	70	130	93	70
/anadium	EMS0032-JUN19	µg/g	3	<3	2	20	103	70	130	107	70
Zinc	EMS0032-JUN19	µg/g	0.7	<0.7	3	20	103	70	130	102	70

QC SUMMARY

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref.
	Reference			Blank	RPD	AC	Spike	Recove	ery Limits %)	Spike Recovery	Recovery Lii
						(%)	Recovery (%)	Low	High	(%)	Low
F1 (C6-C10)	GCM0139-JUN19	µg/g	10	<10	ND	30	105	80	120	100	60

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	licate	L	CS/Spike Blank		N	Matrix Spike / Ref.
	Reference			Blank	RPD	AC	Spike	Recover		Spike Recovery	Recovery Liu (%)
						(%)	Recovery (%)	Low	High	(%)	Low
F2 (C10-C16)	GCM0161-JUN19	μg/g	10	<10	ND	30	99	80	120	96	60
F3 (C16-C34)	GCM0161-JUN19	µg/g	50	<50	24	30	99	80	120	96	60
F4 (C34-C50)	GCM0161-JUN19	µg/g	50	<50	13	30	99	80	120	96	60

QC SUMMARY

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		5/9/20/2004	Matrix Spike / Ref.
	Reference			Blank	RPD	AC	Spike	Recover		Spike Recovery	Recovery L
						(%)	Recovery (%)	Low	High	(%)	Low
F4G-sg (GHH)	GCM0217-JUN19	µg/g	200	<200	11	30	99	80	120	NA	60
рН											
Method: SM 4500 Internal	ref.: ME-CA-IENVIEWL-LAK-AN-001	2012 1913 1913 1913 1913 1913 1913 1913 19					2 19 14 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Matte Saller (Def
	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank			Matrix Spike / Ref.
Method: SM 4500 Internal		Units	RL	Method Blank	Dup RPD	AC	Spike		ry Limits 6)	Spike Recovery	Matrix Spike / Ref. Recovery ((%)
Method: SM 4500 Internal	QC batch	Units	RL	Blank	T. div			Recove		Spike	Recovery I

QC SUMMARY

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-[ENV]GC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Ref.
	Reference			Blank	RPD	AC	Spike	Recover		Spike Recovery	Recovery Lii
					(%)	Recovery (%)	Low	High	(%)	Low	
Benzene	GCM0139-JUN19	µg/g	0.02	<0.02	ND	50	90	60	130	86	50
Ethylbenzene	GCM0139-JUN19	µg/g	0.05	<0.05	ND	50	90	60	130	89	50
m/p-xylene	GCM0139-JUN19	µg/g	0.05	<0.05	ND	50	94	60	130	93	50
o-xylene	GCM0139-JUN19	µg/g	0.05	<0.05	ND	50	93	60	130	92	50
Toluene	GCM0139-JUN19	µg/g	0.05	<0.05	ND	50	91	60	130	89	50

Water Soluble Boron

Method: O.Reg. 153/04 | Internal ref.: ME-CA-IENVI SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	Recovery	.CS/Spike Blank		Recovery	Matrix Spike / Ref.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recovery Lii (%)
N						(%)	Re∞very (%)	Low	High	(%)	Low
Water Soluble Boron	ESG0015-JUN19	µg/g	0.5	<0.5	ND	20	103	80	120	101	70

OC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than cequal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- **ND** Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

Environment, Health & Safety

Request for Laboratory Services and CHAIN OF CUSTODY

- Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment

- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

No: 006861

Laboratory Information Section - Lab use only CAYLIN GRAHAM Received By (signature): Received Date (mm/dd/yyyy) CG 1051 [9 (mm/dd/yy) Cooling Agent Present: Custody Seal Present: LAB LIMS #: <u>CA14211</u>-Jun19 Temperature Upon Receipt (°C) 2×3. Received Time: 0 9:30 Custody Seal Intach PROJECT INFORMATION REPORT INFORMATION INVOICE INFORMATION Company: Com born (same as Report Information) P.O. #: Quotation #: Site Location/ID: Street Sweeping Characterrzotron Contact: Berne Toylor Project #: 78/7-007 Company: TURNAROUND TIME (TAT) REQUIRED Contact: TAT's are quoted in business days (exclude statutory holidays & weekends). Regular TAT (5-7days) Address: Samples received after 6pm or on weekends: TAT begins next business day Phone: 705 742 7900 1 Day 2 Days 3 Days 4 Days RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION Email: Dernie, towlor @ Combrum-rue, com Phone: Specify Due Date: Rush Confirmation ID: Email: Email: NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE REGULATIONS SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY **ANALYSIS REQUESTED** Other Regulations: Sewer By-Law: Regulation 153/04: Table 1
Table 2 Reg 347/558 (3 Day min TAT) R/P/I Soil Texture: Sanitary SVOC(all) □ PCB[lgnlt.□ Ext. MMER MUCIC Coarse Storm Voc /OC□ BTEX□ THM□ OP Medium CCME Other: Municipality: Table 3 □ Aroclor PHC F1-F4 以 VO(BTEX以 BTEX/F1口 ABN [Table Metals & Inorganics MISA Field Filtered (Y/N) COMMENTS: Pesticides OC □ Gen. ABN RECORD OF SITE CONDITION (RSC) YES TCLP M&I (B(a)P □ A Nater Pkg PCB Total TIME # OF DATE PAH MATRIX SAMPLE IDENTIFICATION Sewer SAMPLED SAMPLED BOTTLES Juno 4 Sor 4 Sor 4 Soi V 1515 5 7 8 9 10 11 12 Observations/Comments/Special Instructions Date: 0-6104119 (mm/dd/yy) Sampled By (NAME): Signature: Pink Copy - Client Date: 06 10 5 1 1 9 Relinquished by (NAME): Signature: (mm/dd/yy) Yellow & White Copy - SGS Revision #: 1.1

AGGREGATES GRADATION REQUIREMENTS OPSS 1010 - GRANULARS, LS-602

Client:

City of Kawartha Lakes, Waste and Recycling Branch

Project Name:

Soil Testing - Various Works Yards 2019

Sampled By:

Client

Emily Depot

Location: **Material Type:**

No Specs

MTO Contract No.: N/A **Project Number:**

7817-002

Date Sampled:

June 3, 2019

Lab Sample No.:

AG-19-0152

			Grada	tion Requir	ement, % Pa	ssing		# # # # # # # # # # # # # # # # # # #	Test	Result
Sieve Size			В				图表句表	4 5 5 6 6		Meets
	A	Type I	Type II	Type III	M	0	S	SSM	Sample	Requirements (Y/N)
150 mm	-	100		100	14.5.49	-		100	100	12.75
106 mm	<u> </u>	<u> </u>	100	E SI	-				100	1 4
37.5 mm	-	1-]-J×	31-E	-	100	46 <u>-</u>		100	
26.5 mm	100	50-100	50-100	50-100		95-100	100	50-100	100	
19.0 mm	85-100 *87-100	-		45 - 76	100	80-95	90-100	5 <u>1</u> 5	99.9	
13.2 mm	65-90 *75-95	<u> </u>			75-95	60-80	75-100	W 55	99.6	
9.5 mm	50-73 *60-73	-	- 5	32-100	55-80	50-70	60-85		98.6	113
4.75 mm	35-55 *40-60	20-100	20-55	20-90	35-55	20-45	40-60	20-100	93.1	
1.18 mm	15-40	10-100	10-40	10-60	15-40	0-15	20-40	10-100	66.9	
300 μm	2-55	2-65	5-22	2-35	5-22	_	11-25	5-95	31.6	
150 µm	- 1	<u> </u>			-4	<u> -</u> -	_	2-65	17.7	
75 µm	2.0-8.0 **2.0-10.0	0-8.0 **0-10.0	0-10.0	0-8.0 **0-10.0	2.0-8.0	0-5.0	9.0-15.0 **9.0-17.0	0-25.0	10.3	

*	When	the	aggregate	is	obtained	from	an	iron	blast	furnace	slag	source
---	------	-----	-----------	----	----------	------	----	------	-------	---------	------	--------

Issued by:

Stuart Baird, Senior Project Manager

June 24, 2019

Date

When the aggregate is obtained from a quarry or blast furnace slag or nickel slag source.

AGGREGATES PHYSICAL PROPERTIES REQUIREMENTS **OPSS 1010 - GRANULARS, LS-VARIOUS PROCDURES**

City of Kawartha Lakes, Waste and Recycling Branch Client:

Project Number:

7817-002

Project Name:

Soil Testing - Various Works Yards 2019

Date Sampled: June 3, 2019

Sampled By: Location:

Emily Depot

Client

Material Type:

No Specs

MTO Contract No.: N/A

Lab Sample No.: AG-19-0152

			Grada	tion Require	ment, %	Passing			Test	Result
LS Test Procedure Name	^		В	College 1	M	0	s	SSM	Sample	Meets Requirement
and Number	Α	Type I	Type II	Type III	IVI			33141	Sample	ts (Y/N)
Crushed Particles % minimum, LS-607	60	-	100		60	100	50	50	N/A	.e. (151
Unconfined Freeze- Thaw, % maximum loss, LS-614	-	-	-	•	-	15	43,1	-	N/A	nu 800
2 or more Crushed Faces % minimum, LS-617	-	-	-	10 to	-	85 (Note 1)	-	-	N/A	300
rviicro-bevar Abrasion, Coarse Aggregate % maximum loss	25	30 (Note 2)	30	30 (Note 2)	25	21	25	30 (Note 2)	N/A	P. 1 &
Fine Aggregate % maximum loss	30	35	35	35	30	25	30	-	11.2	(iii) (iii)
Asphalt Coated Particles, % maximum, LS-621	30	30	0	30	30	0	30	0	N/A	F 18 5 61
Amount of Contamination, LS-630		d d		(Note	e 3)					
Plasticity Index, maximum, LS-703/704				0		68.57			Signal	arm est a
Determination of Permeability, k, LS-709				(Note	e 4)	AL Z	100	de d		

1. When Granular O is produced from boulders, cobbles, or gravel retained on the 50 mm sieve.

1110-1

- 2. The coarse aggregate Micro-Deval abrasion loss test requirement shall be waived if the material has more than 80% passing the 4.75 mm sieve.
- 3. Granular A, B Type I, B Type III, or M may contain up to 15 percent by mass crushed glass or ceramic materials. Granular A, B Type III, M, O, and S shall not contain more than 1.0 percent by mass of wood, clay brick and/or gypsum and/or gypsum wall board or plaster. Granular B Type II and SSM shall not contain more than 0.1 percent by mass of wood.
- 4. For materials north of the French/Mattawa Rivers only, the coefficient of permeability, k, shall be greater than 1.0 x 10-4 cm/s or field experience has demonstrated satisfactory

performance. Prior data demonstrating compliance with this requirement for k, shall be acceptable provided that such testing has been done within 5 years of the material being used and field performance has continually been shown to be satisfactory.

	Think Land		
Issued by:		June 24, 2019	1
	Stuart Baird, Senior Project Manager	Date	

AGGREGATES GRADATION REQUIREMENTS OPSS 1010 - GRANULARS, LS-602

Client:

City of Kawartha Lakes, Waste and Recycling Branch

Project Number:

7817-002

Project Name:

Soil Testing - Various Works Yards 2019

Sampled By:

Client

Date Sampled:

June 3, 2019

Location:

Fenelon Depot

Material Type:

No Specs

MTO Contract No.: N/A

Lab Sample No.:

AG-19-0151

			Grada	tion Requir	ement, % Pa	ssing	8		Test	Result
Sieve Size	Sample	Maa	В	0 19	14 7 7 7		Likur II	avT	8;	Meets
((R (Y)	A	Type I	Type II	Type III	M	0	S	SSM	Sample	Requirements (Y/N)
150 mm		100		100	# <u> </u>		-	100	100	2.1 marintina
106 mm	AWA	-	100	8r	-	_			100	Annual Communication of the Co
37.5 mm	МИ <u>.</u>			88 5 810VIJ	-	100			100	note Crosber Stronger US
26.5 mm	100	50-100	50-100	50-100		95-100	100	50-100	100	enpoA eeus
19.0 mm	85-100 *87-100	-	- 35	es = e	100	80-95	90-100	to - c	100	nox assure. Ispappa soci
13.2 mm	65-90 *75-95	-	O.S.	0 -	75-95	60-80	75-100	18 7	99.9	ata J. L.
9.5 mm	50-73 *60-73	H-1		32-100	55-80	50-70	60-85		99.4	To 10 const
4.75 mm	35-55 *40-60	20-100	20-55	20-90	35-55	20-45	40-60	20-100	93.2	
1.18 mm	15-40	10-100	10-40	10-60	15-40	0-15	20-40	10-100	67.1	13 AU micros
300 μm	2-55	2-65	5-22	2-35	5-22	<u>.</u>	11-25	5-95	25.4	i a pagan
150 µm	e en i grenze	partis nett en	rm asil tsna	avasa oyo 08 aso an) ti biyo		es leverig to	aeldgon and	2-65	11.1	Starpas Wate
75 μm	2.0-8.0 **2.0-10.0	0-8.0 **0-10.0	0-10.0	0-8.0 **0-10.0	2.0-8.0 **2.0-10.0	0-5.0	9.0-15.0 **9.0-17.0	0-25.0	4.7	th skription i

When the aggregate is obtained from an iron blast furnace slag source.

	Strat Land		
Issued by:	Programme Committee Commit	June 24, 2019	
	Stuart Baird, Senior Project Manager	Date	

^{**} When the aggregate is obtained from a quarry or blast furnace slag or nickel slag source.

AGGREGATES PHYSICAL PROPERTIES REQUIREMENTS **OPSS 1010 - GRANULARS, LS-VARIOUS PROCDURES**

City of Kawartha Lakes, Waste and Recycling Branch Client:

7817-002 **Project Number:**

Project Name:

Soil Testing - Various Works Yards 2019

Date Sampled: June 3, 2019

Sampled By: Location:

Client

Material Type:

Fenelon Depot

No Specs MTO Contract No.: N/A

Lab Sample No.: AG-19-0151

		Test Result								
LS Test Procedure - Name and Number	Α	Type I	B Type II	tion Require Type III	М	0	s	SSM	Sample	Meets Requirements (Y/N)
Crushed Particles % minimum, LS-607	60	-	100		60	100	50	-	N/A	150 1 Kg
Unconfined Freeze- Thaw, % maximum loss, LS-614		-	-	-	-	15	ga -	-	N/A	ofm = clf) ·
2 or more Crushed Faces % minimum, LS-617	-	-	-	-	-	85 (Note 1)		-	N/A	
Coarse Aggregate % maximum loss	25	30 (Note 2)	30	30 (Note 2)	25	21	25	30 (Note 2)	N/A	
rincro-DeVaf1Abrasion, Fine Aggregate % maximum loss	30	35	35	35	30	25	30	-	8.6	
Asphalt Coated Particles, % maximum, LS-621	30	30	0	30	30	0	30	0	N/A	
Amount of Contamination, LS-630		(Note 3)								
Plasticity Index, maximum, LS-703/704		0								ma
Determination of Permeability, k, LS-709		(Note 4)								HE COL

- 1. When Granular O is produced from boulders, cobbles, or gravel retained on the 50 mm sieve.
- 2. The coarse aggregate Micro-Deval abrasion loss test requirement shall be waived if the material has more than 80% passing the 4.75 mm sieve.
- 3. Granular A, B Type I, B Type III, or M may contain up to 15 percent by mass crushed glass or ceramic materials. Granular A, B Type III, M, O, and S shall not contain more than 1.0 percent by mass of wood, clay brick and/or gypsum and/or gypsum wall board or plaster. Granular B Type II and SSM shall not contain more than 0.1 percent by mass of wood.
- 4. For materials north of the French/Mattawa Rivers only, the coefficient of permeability, k, shall be greater than 1.0 x 10-4 cm/s or field experience has demonstrated satisfactory

performance. Prior data demonstrating compliance with this requirement for k, shall be acceptable provided that such testing has been done within 5 years of the material being used and field performance has continually been shown to be satisfactory.

11/10-1

Issued by:	Think bund	June 24, 2019				
	Stuart Baird, Senior Project Manager	Date				

AGGREGATES GRADATION REQUIREMENTS OPSS 1010 - GRANULARS, LS-602

Client:

City of Kawartha Lakes, Waste and Recycling Branch

Project Number:

7817-002

Project Name:

Soil Testing - Various Works Yards 2019 Client

Date Sampled:

June 3, 2019

Sampled By: Location:

Oakwood Depot

Material Type:

MTO Contract No.:

No Specs

N/A

Lab Sample No.:

AG-19-0153

				ation Requir	rement, % Pa	ssing		Test Result		
Sieve Size	Manual .	Mee eB o			Mary Street					Meets
	Α	Type I	Type II	Type III	M	0	S	SSM	Sample	Requirements (Y/N)
150 mm	Alxi	100		100		-	(d)	100	100	
106 mm	AW.	-	100	81		-	-		100	Contractor of
37.5 mm	rw_	-	-	SS (Note		100			100	radsina stori M. ramalima
26.5 mm	100	50-100	50-100	50-100	10 L	95-100	100	50-100	100	Delgo Alberto
19.0 mm	85-100 *87-100			25	100	80-95	90-100	36	100	mito flavora service de la companya
13.2 mm	65-90 *75-95	-	ne	-	75-95	60-80	75-100		99.9	and statement of the st
9.5 mm	50-73 *60-73			32-100	55-80	50-70	60-85		99.6	
4.75 mm	35-55 *40-60	20-100	20-55	20-90	35-55	20-45	40-60	20-100	94.9	J. nie Brienat
1.18 mm	15-40	10-100	10-40	10-60	15-40	0-15	20-40	10-100	67.6	
300 μm	2-55	2-65	5-22	2-35	5-22	<u>.</u>	11-25	5-95	25.2	l i glerenn
150 µm		active manny	ani san ipas	50 mm skeve red if the mis	conting design	Stings (5 to	ets, cobblesa	2-65	11.2	righty toward
75 μm	2.0-8.0 **2.0-10.0	0-8.0 **0-10.0	0-10.0	0-8.0 **0-10.0	2.0-8.0 **2.0-10.0	0-5.0	9.0-15.0 **9.0-17.0	0-25.0	5.7	A di gignesia

When the aggregate is obtained from an iron blast furnace slag source.

Issued by:

June 24, 2019

Date

Stuart Baird, Senior Project Manager

^{**} When the aggregate is obtained from a quarry or blast furnace slag or nickel slag source.

AGGREGATES PHYSICAL PROPERTIES REQUIREMENTS **OPSS 1010 - GRANULARS, LS-VARIOUS PROCDURES**

Client:

City of Kawartha Lakes, Waste and Recycling Branch

Project Number:

7817-002

Project Name:

Soil Testing - Various Works Yards 2019

Date Sampled: June 3, 2019

Sampled By:

Client

Location:

Oakwood Depot

Material Type:

No Specs

MTO Contract No.: N/A

Lab Sample No.: AG-19-0153

		Test Result								
LS Test Procedure Name and Number	Α	Type I	B Type II	Type III	М	О	S	SSM	Sample	Meets Requirements (Y/N)
Crushed Particles % minimum, LS-607	60	-	100	-	60	100	50	-	N/A	
Unconfined Freeze- Thaw, % maximum loss, LS-614	-	-	_	i.	-	15		-	N/A	
2 or more Crushed Faces % minimum, LS-617	-	-	-	1-11	_	85 (Note 1)	-	-	N/A	
Coarse Aggregate % maximum loss	25	30 (Note 2)	30	30 (Note 2)	25	21	25	30 (Note 2)	N/A	
rincro-Deरिति भिरावडाला, Fine Aggregate % maximum loss	30	35	35	35	30	25	30	-	14.1	
Asphalt Coated Particles, % maximum, LS-621	30	30	0	30	30	0	30	0	N/A	
Amount of Contamination, LS-630		(Note 3)								
Plasticity Index, maximum, LS-703/704		0								
Determination of Permeability, k, LS-709		(Note 4)								

- 1. When Granular O is produced from boulders, cobbles, or gravel retained on the 50 mm sieve.
- 2. The coarse aggregate Micro-Deval abrasion loss test requirement shall be waived if the material has more than 80% passing the 4.75 mm sieve
- 3. Granular A, B Type I, B Type III, or M may contain up to 15 percent by mass crushed glass or ceramic materials. Granular A, B Type III, M, O, and S shall not contain more than 1.0 percent by mass of wood, clay brick and/or gypsum and/or gypsum wall board or plaster. Granular B Type II and SSM shall not contain more than 0.1 percent by mass of wood.
- 4. For materials north of the French/Mattawa Rivers only, the coefficient of permeability, k, shall be greater than 1.0 x 10-4 cm/s or field experience has demonstrated satisfactory

performance. Prior data demonstrating compliance with this requirement for k, shall be acceptable provided that such testing has been done within 5 years of the material being used and field performance has continually been shown to be satisfactory.

	State Band				
Issued by:	Mente	June 24, 2019			
100000 271	Stuart Baird, Senior Project Manager	Date			